The Earth ain't Flat: Monocular Reconstruction of Vehicles on Steep and Graded Roads from a Moving Camera

نویسندگان

  • Junaid Ahmed Ansari
  • Sarthak Sharma
  • Anshuman Majumdar
  • J. Krishna Murthy
  • K. Madhava Krishna
چکیده

Accurate localization of other traffic participants is a vital task in autonomous driving systems. State-of-the-art systems employ a combination of sensing modalities such as RGB cameras and LiDARs for localizing traffic participants, but most such demonstrations have been confined to plain roads. We demonstrate, to the best of our knowledge, the first results for monocular object localization and shape estimation on surfaces that do not share the same plane with the moving monocular camera. We approximate road surfaces by local planar patches and use semantic cues from vehicles in the scene to initialize a local bundle-adjustment like procedure that simultaneously estimates the pose and shape of the vehicles, and the orientation of the local ground plane on which the vehicle stands as well. We evaluate the proposed approach on the KITTI and SYNTHIA-SF benchmarks, for a variety of road plane configurations. The proposed approach significantly improves the state-of-the-art for monocular object localization on arbitrarily-shaped roads. *The first two authors contributed equally to this work. 1Junaid Ahmed Ansari, Sarthak Sharma, Anshuman Majumdar, and K. Madhava Krishna are with the Robotics Research Center, KCIS, IIIT Hyderabad, India. [email protected] 2J. Krishna Murthy is with Montreal Institute of Learning Algorithms (MILA), Universite de Montreal, Canada.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moving Vehicle Tracking Using Disjoint View Multicameras

Multicamera vehicle tracking is a necessary part of any video-based intelligent transportation system for extracting different traffic parameters such as link travel times and origin/destination counts. In many applications, it is needed to locate traffic cameras disjoint from each other to cover a wide area. This paper presents a method for tracking moving vehicles in such camera networks. The...

متن کامل

Character Reconstruction and Animation from Monocular Sequence of Images

In this paper we present different methods for the calibration and orientation of monocular image sequences and the 3D reconstruction of human characters. Three different situations are considered: a static character imaged with a moving camera, a moving character imaged with a fix camera and a moving character imaged with a moving camera. A self-acquired sequence is used in the first case whil...

متن کامل

Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images

In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...

متن کامل

A Method for Predicting Vehicles Motion Based on Road Scene Reconstruction and Neural Networks in Real Time

The suggested method helps predicting vehicles movement in order to give the driver more time to react and avoid collisions on roads. The algorithm is dynamically modelling the road scene around the vehicle based on the data from the onboard camera. All moving objects are monitored and represented by the dynamic model on a 2D map. After analyzing every object’s movement, the algorithm predicts ...

متن کامل

Learning Deeply Supervised Visual Descriptors for Dense Monocular Reconstruction

Visual SLAM (Simultaneous Localization and Mapping) methods typically rely on handcrafted visual features or raw RGB values for establishing correspondences between images. These features, while suitable for sparse mapping, often lead to ambiguous matches at texture-less regions when performing dense reconstruction due to the aperture problem. In this work, we explore the use of learned feature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018